Improved Distributed Particle Filter for Simultaneous Localization and Mapping

نویسندگان

  • Mei Wu
  • Fujun Pei
  • Dae Hee Won
چکیده

The Simultaneous localization and mapping (SLAM) problem have become a focus of many researches on robot navigation. Generally the most widely used filter in SLAM problems are centralized filter. It is well known that SLAM based on conventional centralized filter must reconfigure the entire state vectors when the observation dimension changes, which cause an exponential growth in computation quantities and difficulties in isolate potential faults. In this paper, we proposed improved DPF distributed particle filter-SLAM in two aspects, in DPF-SLAM one centralized filter is divided into several distributed filters which reduce the computation quantities efficiently and avoid the necessary to reconfigure the entire state vectors in every step. First, we improved the important function of the local filters in distributed particle filter. By changed a set constant in the important function to an adaptive value, we improved the robustness of the system. Second, we propose an information fusion method that mixed the innovation method and the number of effective particles method, which combined the advantages of these two methods. The result of simulations shows that the algorithms we proposed improved the virtue of the DPF-SLAM system in isolate faults and enabled the system has a better tolerance and robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved FastSLAM Framework Based on Particle Swarm Optimization and Unscented Particle Filter ⋆

FastSLAM is a framework which solves the problem of simultaneous localization and mapping using a Rao-Blackwellized particle filter. Conventional FastSLAM is known to degenerate over time in terms of accuracy due to the particle depletion in resampling phase. To solve this problem, a FastSLAM method based on particle swarm optimization and unscented particle filter is proposed. The number of pa...

متن کامل

An SLAM Algorithm Based on Square-root Cubature Particle Filter

The lack of the latest measurement information and the Particle serious degradation cause low estimation precision in the tradition particle filter SLAM (simultaneous localization and mapping). For solve this problem, a SRCPF-SLAM (square cubature particle filter simultaneous localization and mapping) is proposed in this paper. The algorithm fuses the latest measurement information in the stage...

متن کامل

Square Root Unscented Particle Filtering for Grid Mapping

In robotics, a key problem is for a robot to explore its environment and use the information gathered by its sensors to jointly produce a map of its environment, together with an estimate of its position: so-called SLAM (Simultaneous Localization and Mapping) [13]. Various filtering methods – Particle Filtering, and derived Kalman Filter methods (Extended, Unscented) – have been applied success...

متن کامل

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

FastSLAM: An Efficient Solution to the Simultaneous Localization And Mapping Problem with Unknown Data Association

This article provides a comprehensive description of FastSLAM, a new family of algorithms for the simultaneous localization and mapping problem, which specifically address hard data association problems. The algorithm uses a particle filter for sampling robot paths, and extended Kalman filters for representing maps acquired by the vehicle. This article presents two variants of this algorithm, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013